Example 7: Consider the set of vectors $\operatorname{span}(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3)$ where

$$\mathbf{v}_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \qquad \mathbf{v}_2 = \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \qquad \mathbf{v}_3 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
(4)

1. Show that the vector \mathbf{v}_3 is in span $(\mathbf{v}_1, \mathbf{v}_2)$.

2. Show that any vector in span $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ is also in span $(\mathbf{v}_1, \mathbf{v}_2)$.

3. Show that any vector in span $(\mathbf{v}_1, \mathbf{v}_2)$ is also in span $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$.

4. Thus $\operatorname{span}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ is equal to $\operatorname{span}(\mathbf{v}_1, \mathbf{v}_2)$ and hence is a _____ in \mathbb{R}^3 .

Theorem 3: Let $\mathbf{v}_1, \ldots, \mathbf{v}_n$ in \mathbb{R}^m . If \mathbf{v}_i is in span $(\mathbf{v}_1, \ldots, \mathbf{v}_{i-1}, \mathbf{v}_{i+1}, \ldots, \mathbf{v}_n)$, then $\operatorname{span}(\mathbf{v}_1, \ldots, \mathbf{v}_n) = \operatorname{span}(\mathbf{v}_1, \ldots, \mathbf{v}_{i-1}, \mathbf{v}_{i+1}, \ldots, \mathbf{v}_n)$